
Compressible Fluid Flow and the Approximation of 
Iterated Integrals of a Singular Function* 

By P. L. Richman 

Abstract. A computer implementation of Bergman's solution to the initial value 
problem for the partial differential equation of compressible fluid flow is described. 
This work necessitated the discovery of an efficient approximation to the iterated 
indefinite integrals of an implicitly defined real function of a real variable with a 
singularity which is not included in the possible domains of integration. The method 
of approximation used here and the subsequently derived error bounds appear to 
have rather general applications for the approximation of the iterated integrals of a 
singular function of one real variable. l 
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1. Introduction. Of interest here are the initial and boundary value problems for 
the partial differential equation describing the two-dimensional, irrotational, 
steady, free from turbulence, adiabatic flow of an ideal, inviscid, compressible fluid. 
The first task in devising a numerical procedure for solving such problems is that of 
finding a constructive mathematical solution to the problem. For certain subsonic 
domains in the physical plane, a constructive solution to the boundary value prob- 
lem can be found in [B.2], [B.3], and [B.4]. It is given there as an infinite series of 
orthogonal polynomials which converges only in (a part of) the subsonic region. In 
order to continue this solution into the supersonic region, Bergman suggests using 
this (explicit) subsonic solution to set up an initial value problem of mixed type. 
The solution to this initial value problem, as given in [B.2], may then be valid in 
some part of the supersonic region. (The particular solutions to the flow equation 
which are used here and in [B.2] were obtained independently by Bergman and 
Bers-Gelbart.) Whether this continuation will lead to a closed, meaningful flow is 
an open question. 

Even after such constructive solutions are found, there is much to be done before 
actual computation can be carried out. In this paper, we deal with the solution of the 
initial value problem of mixed type. It is in this connection that the iterated 
integrals of a singular function arise (the singularity being near to, but not in, the 
possible domains of integration). 

These procedures for generating flow patterns are different from that using 
Bergman's integral operator [B.1] and the examples of this paper are different from 
those obtained by Stark [S], using this integral operator. See also Ludford [L] and 
Finn and Gilbarg [F-G]. 
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In Section 2, the initial value problem and its solution are presented. 
In Section 3, we approximate the iterated integrals arising in the solution of 

Section 2 for the special case in which the fluid under consideration is air. 
In Section 4, the methods of approximation used in Section 3 are generalized to 

cover an arbitrary fluid. 
In Section 5, a numerical procedure for generating the solution to the initial 

value problem is given briefly, and a sample flow pattern is included. A new relation 
between the speed, v(H), and the iterated integrals, sm(H, Ho)2 is also given. 

In Section 6, a priori absolute error bounds are derived for the truncation and 
function approximation errors. To illustrate the effectiveness of these bounds, we 
analyze the error involved in computing, by our method, the well-known Ringleb 
solution [R]. 

Our principal results for numerical analysis are the development of an efficient 
method for approximating the iterated indefinite integrals of a singular function 
(Sections 3, 4) and the derivation of a tight error-bound for the error arising in such 
an approximation, excluding roundoff (Section 6). In comparing our method of 
approximation with a straightforward polynomial approximation technique, we 
find that our method offers 

(1) considerably more accuracy for the number of arbitrary coefficients used in 
the approximation to the function (1(H)) to be iteratively integrated (see (2.6) 
and/or (3.1) for a definition of the iterated integrals), and 

(2) better numerical properties; our method avoids a fit to l(H) with large co- 
efficients of alternating signs so that we can use single precision for our computa- 
tions, and our method involves considerably smaller powers of a certain variable 
(see Table 3.2) so that we avoid overflow/underflow problems. 

These advantages are obtained by making effective use of available information 
about the singularity of l(H). 

2. The Initial Value Problem. The partial differential equation describing the 
flow of an inviscid, ideal, compressible fluid is nonlinear when considered in the 
physical plane (x, y-plane). However, when transformed into the so-called hodo- 
graph plane (H, 0-plane), this equation becomes a linear one, namely (see [B-H-K] 
for a description of the physical problem and explanation of the hodograph trans- 
formation): 

(2.1) a2'/aH2 + l(H) a2'/ao2 = 0 1 (H) (1-M2)/2 
where 

(2.2) H H(v) (s) 

(2.3) p p(v) = {1- (k -1)(vla 

(2.4) M = v/{ ao -2 (k- } 
Here 0 is the angle which the velocity vector forms with the positive direction of the 
x-axis, v is the speed, '(H, 0) is the stream function, M is the Mach number, p is the 
density, vl is the speed when M = 1 (i.e., the speed on the sonic line), k is a constant 
depending on the fluid, and ao is a conveniently chosen constant. 
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We shall describe a numerical procedure for solving the initial value problem in 
which the stream function, *I(Ho, 0) = f(O), and its derivative, 

a*h(Ho) = 9(1)(O) OH H=HO 

are specified on an arbitrary line, H = Ho. The basis for this procedure is provided 
by the following 

THEOREM 2.1 (SEE [B.2, p. 895]). Let a and ,3 satisfy a < < H(ao(2/(k - 1))1/2). 
Suppose that for 101 < 01 and a given HoC[a, /] we have 

00 

I(Ho, 0) = A Cn~0 -f(0) 
(2.5) n=o 

a'I (H. 0) - E nrno-1 g(0) 
am H=Ho n=o 

where the series lCnon and EDn~n converge uniformly and absolutely for 101 ? 01. 
Suppose that I 1(H) I < c2, 0 < c < oo, for H C [a, a]. Let us define functions sm(H, Ho) 
by so(H, Ho) = 1, s1(H, Ho) = H o-H, and for m = 2, 3, . . . 

rH rH1 

(2.6) sm(H, Ho) = fH f l(H2)Sm-2 (H2, Ho)dH2dH1 . 

Then, for H and 0 satisfying 1O1 + cjH - Hol < 01 and H E [a, j3], 

00 

(2.7) 'I(H, 0) = I (-1>) j{s2j(H. Ho) f (2j) (0) + s2j+l (H. Ho)g(2j+ 1) (0)} j=o 
is the unique (analytic) solution of (2.1) satisfying (2.5). Here f( - d if/doi and 
g(i+l) = dig(l)/d0i. 

It is easy to check that (2.7) satisfies (2.1) and (2.5). For a proof of (absolute 
and uniform) convergence of (2.7) see [B.2, p. 896]. (However, -there is an incorrect 
specification of the domain of convergence in this reference. The domain stated 
there is { (H, 0): I01 + cIH - Hoj ? 01 }, whereas the domain of convergence actually 
established by his proof is 

{(H, 0): 101 + cjH - Hol < 01 and IH - Hol < H1}. 

The constraint IH - Hol HI corresponds to our constraint, H C [a, /].) 
The domain of convergence guaranteed by this theorem is diamond shaped 

(possibly truncated). If the initial conditions are specified by a Fourier series instead 
of a power series, then a theorem similar to this one can be proved. In that case, the 
domain of guaranteed convergence would be rectangular. 

In any numerical evaluation of the right-hand side of (2.7) we have to approxi- 
mate all functions in a convenient way, and we must truncate the series. We shall 
denote approximation functions by enclosing the function name in brackets. In this 
manner (2.7) becomes 

n 
[at] (H, Ho) 0) = I (- 1) it [82j] (H, Ho) [f (2i)] (0) 

(2.8) 0 

+ [82j+1] (H, Ho) [g(2j+l)] (0) 
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The approximation, [in], to ' depends on Ho, whereas ' does not. The following 
remarks about f(2i) will apply to g (2 i+') as well. In general, obtaining approximations 
[f(2i)], for j = 0, 1, ***, n, is not difficult. In fact, in the usual application of this 
procedure f(2i) will be defined in terms of functions customarily available on com- 
puters, such as sine, cosine, etc., and it will be possible to calculate f(2ID to almost 
full machine accuracy. In such cases the fact that we are really calculating a [f(2I )] is 
somewhat obscured by our ability to express it, in current programming languages, 
in precisely the form of its formal definition. For example, the Algol statement to 
calculate an approximation to h(x) = sin x is just "h: = sin (x)." However, when 
only [f], and not f, is known (perhaps as the result of solving the boundary value 
problem alluded to earlier in this paper) a severe error is incurred. This is why we 
keep track of f(2i - [f(2I )] in the analysis of Section 6. 

The values of [f(2 i)] (0) may be derived from an approximation, [f]. For example, 
if f is given as in (2.5), we can truncate that series to obtain [f]. We can then use an 
iterative synthetic division scheme to evaluate [f] (2i (0)/(2j)!, for j = 0, 1, ... , n. 
(Note that [f](-) denotes the mth derivative of [f] and [f(m)] denotes an approxi- 
mation to f(m); [f] () need not be a very good [f(m)].) Of course the error of [f] (2 ) in- 
curred by such a procedure increase as j increases. However, if (any suitable norm 
of) the f(2 i), considered as a function of j, does not increase too rapidly for j < n, 
then the absolute error of s2Jf(2 i) will not increase as j grows and remains ? n. This 
is because sm(H, Ho) -* 0 rapidly as m -* o, since, as indicated in [B.2], 

_m1 
(2.9) Ism(HH0)l < m! cmlH-Holm- 

where 6m = c for m odd and 6m = 1 for m even, and c is the constant in Theorem 2.1. 
(See Section 6 for a further discussion of this point.) 

The determination of [sm] presents more challenging problems. Because of the 
nature of 1, an exact formula for sm has not been found. The numerical procedure 
which evaluates ['I'] will be used to trace the streamlines, '(H, 0) = const. Such 
curves, when transformed into the x, y-plane, describe the fluid flow. This means 
that many evaluations of ['I'] will be required, and so the [1] for the 1 in (2.6) must 
be chosen to yield an efficient scheme. In the next section we derive such an ap- 
proximation to 1 and thus to sm for the special case in which the fluid under con- 
sideration is air. In this case 

(2.10) k = 1.4, V1 = (5/6) 1, 

and we choose ao = 1 (see (2.3) and (2.4)). The general case, where k > 1, is dealt 
with in Section 4. 

3. The Integrals sm(H, Ho) and Their Approximation for k = 1.4. We will 
consider Ho satisfying Ho < .25125 ... = H(V\5) p, since as H -> p the Mach 
number, M(H), approaches infinity. A major problem in this implementation was 
the construction of an approximation, [1], to 1 over some subinterval of (- s, p) 
which would allow a relatively simple expression for [Sm]. The approximation of 
[B-H-K] was not satisfactory for our purposes. It consisted of two tenth-degree 
polynomial approximations, one for the region [-1, 0] and the other for [0, .2]. The 
maximum absolute error of this combined approximation was 2.6 X 10-. In 
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[B-H-K], Ho was fixed at zero, and so their approximation led to two expressions for 
[sm](H, 0), one valid in [-1, 0], and the other in [0, .2]. In our work Ho is arbitrary, 
so we must have a single representation for [1] and [sm](H, Ho). As indicated in 
[B-H-R, p. 8], more precise knowledge of the singularity of 1 facilitates the determina- 
tion of such a single representation. We observe that, for k = 1.4, 1 has the expan- 
sion, 

00 

(3.1) 1 (H) = E b (p -H)'(-/ 

Thus I has a singularity at p = .25125 of order 12/7. (The first 43 coefficients, 
bo, - - *, b42, are given in [B-H-R, p. 9].) Equation (3.1) follows from (2.1) to (2.4) by 
substituting 5(1 - t) for S2 so that 

(5/6)1/2 2 - d t2.5dt H = (1 .2s2)2 . -= / | 
(3.2) (5/6) 2 6 516 1-t 

- 

_ ; (52 + t712 + ...)dt, 

7/2 9 /2 

(3.3) p-=H = + + 

(3.4) 1(H) = 6T-S 

An approximation of the form 
7 

(3.5) [I] (H) = E aj(p - IH)(2-12)/7 
j=o 

was found for H E [-1, .22] by using the Remez algorithm, as adapted for the 
B5500 computer by Golub and Smith [G-S], to calculate the best values, in the 
Chebyshev sense, for a0, ai, * * a7. These values are listed in Table 3.1. The Remez 
algorithm reported the maximum error of this approximation to be 

(3.6) max 1 (H) - [l](H)j = 4.10533 X 10-5. 
-1<H<.22 

TABLE 3.1. 
The coefficients for [1]. 

j as 

0 -0.1505866818 
1 -0.4018655347 
2 2.0945191543 
3 -5.8821787341 
4 10.9583158033 
5 -10.7524447788 
6 5.9416272229 
7 -0.8198101027 
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It should be noted that this maximum error is not a mathematical bound; it is a 
computed value, subject to errors that are not analyzed by Golub and Smith. 
(However, our experience with this [1](H) has given us much faith in (3.6).) 

This approximation is to be contrasted with that of [B-H-K], where 22 arbitrary 
coefficients (instead of 8) are used, the interval [-1, .2] (instead of [-1, .22]) is 
used, a maximum error of 10-3 (instead of 10-5) is attained, two separate representa- 
tions of [Sm] (instead of one) are required, and the coefficients chosen by Remez for 
[1] are large and have alternating signs, requiring the evaluation of their [sm]'s to be 
done in double precision. There is one more advantage to our approximation, which 
we give after the following representation theorem for [Sm]. 

THEOREM 3.1. Let the [Sm] be connected by the recurrence relation 

rH rHi 

(3.7) [sm] (H, Ho) = [1] (H2) [Sm-2] (H2, Ho)dH2dHl form > 2, 
Ho Ho 

where 

(3.8) [so] (H. Ho) = 1, [si] (H. Ho) = H -Ho, 

N-1 

(3.9) [1](H) = P a,(p - H)(2j-12)'/7 and 7 < N < 0o 
j=o 

Then [sm] can be expressed as 
mN 

(3.10) [sm](H, Ho) = Cmj(p - H)7 for m = 0 1, 2, i=o 

where cm,, = Cm,3 = Cm,5 = Ofor all m and coo = ci,o = -Cl,7 = 1 and ci,= O for 
j 5 0, 7. The Cm, j and Cm-2, j are connected by the following recurrence relations: 

(3.11, cm,j= -7f0m,j-2/j forj= 1,2, *..,mNwithj 5L7, 
mN-2 

(3.12) Cm, 7 = A fOm j(p -HO)(j-5)/7 
i=o 

mN 

(3.13) cm, = - A cmj (p -Ho) 7, 
j=2 

where 

(3.14) Om,i = Om,3 = fr,5 = 0, 

and for j = 0, 2, 4, 6, 7, 8, ** , mN - 2, with entier(x) denoting the greatest integer 
in the real number x, 

n2(j) 

(3.15) Ampnj = _ ancm-2,i-2n, 
5 - n~n7 j 

where 

ni(j) entier(A. + m max {0, j - (m -2)N}) 

and 

n2(j) entier(I min {j, 2N - 21). 



COMPRESSIBLE FLUID FLOW 361 

Proof. Equation (3.10) holds for m = 0; 1. We proceed by induction, assuming 
that (3.10) to (3.15) hold for m - 2 and proving them for m. We have 

N-1 (m-2)N 

[8m_2](H, Ho)[l](H) = E aj(p -EH) 2C'227 E cm2,n( - 

(3.16) jo n=O 
mN-2 

= E C~m, j (p-)( j-12) /7 = am'j(7p - JJ)O2/ 
j=O 

where, forj = 0, 1, * N - 2, 

nz2(j) 

(3.17) am, j = Eacm 2j-2n- 

Since (3.16) is to be integrated, we must show that am,5 = 0, so that the term 
am,5(p - H)-1 drops out of (3.16) and no log (p - H) terms enter. Part of our in- 
duction hypothesis is Cm-2,5-2n = 0 for n = 0, 1, 2, and so 

n2(5) 

(3.18) am,5 = E anCm-2,5-2n = 0 
n-nj(5) 

The rest of the proof follows as a formal calculation. 
This procedure for approximating a singular function, which is to be integrated 

many times, is more general than it may at first appear. If a logarithmic term 
had appeared in the above, we would simply have started our series for [1] at 
ao(p - H)-12/7+e, for some suitably chosen small constant e. (See Section 4.) 

Suppose we had used a single polynomial of degree N' to approximate 1. The 
resulting approximation, [Sm]', to sm would be a polynomial of degree m + N'[m/2]. 
Thus the largest power to which (p - H) would be raised in [sm]' is m + N'[m/2], 
whereas the largest power of (p - H) used by our [sm] is [mN/7]. In the case of air, 
we used N = 8 and we would have had to use an N' of at least 20, so we compare 
[8m/7] with m + 20[m/2] in Table 3.2. 

TABLE 3.2. 
The largest power of p -H involved in [sm] versus that involved in [Sm]' 

m in [Sm] in [Sm]' 

2 2 22 
3 3 23 
4 4 44 
5 5 45 
7 8 67 

10 11 110 
15 17 155 

Thus when p -H takes its largest and smallest values (1.22 and .03125 ... in our 
case), the evaluation of [sm]' would run into overflow/underflow problems long before 
the evaluation of our [sm] does. This saving as well as all the other advantages of our 
method are due to the facts that 
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(1) polynomials are "roly-poly," and are not easily fit to an angular function like 
our l(H) (see Rice [Ric, pp. 15-23]), 

(2) functions of the form ijV ol aj(p -H)2(i-6'7 behave much like our l(H), 
especially near H = p, where 1 is most angular, and 

(3) our [1] is in powers of (p - H)217, beginning at (p - H)-1217, yielding more 
arbitrary coefficients per degree of (p - H) involved in [1] and hence in [Sm]. 

If [1] had approximated 1 to full machine accuracy and if the cmj in (3.10) were 
computed in double precision then it would be wasteful to evaluate (3.10) by taking 
the seventh root of (p - H) and then evaluating (3.10) by a Horner recurrence. 
Considerable accuracy could be saved by breaking [Sm] into seven terms, each of 
which is {a polynomial in (p - H) I X (p-H)8'7, for n = 0, 1, ***, 6. The supe- 
riority of this method (when the cm ,j's are very accurate) can be seen from Eq. 
(15.2) in Wilkinson [W, p. 50]. 

4. The Integrals sm(H, Ho) and Their Approximation for Arbitrary k > 1. For 
the general case in which k is arbitrary (but > 1), we can apply the methods of 
Section 3 to show that 1 has the formal expansion, 

00 

(4.1) I(H) = E aj(p -H)( / where p H(ao(2/(k - 1))1/2) 
j=j 

Thus l(H) has a singularity of order (k + 1)/k at p. We can again use this informa- 
tion to find a good form for [1](H). The form chosen must 

(1) yield an efficient approximation to 1; i.e., it must allow a small maximum 
error to be obtained by an approximation with few terms (and the coefficients for 
this approximation should not be large with alternating signs); 

(2) yield a simple form for [Sm]. 
In order to satisfy (2), we must first of all replace (k - 1)/k by a rational ap- 
proximation, q/r, so that si(H, Ho) = H - Ho will be expressible in the form 
Ejcj(p -H) i/r. As we shall see, it is important to keep r and especially q small. 
The form 

N 

(4.2) [l](H)= aj(p -H)(j-2)/r forN > 1, 
j=1 

will satisfy (1) above, and if no log (p - H) terms enter, we would have 

Um 

(4.3) [sm](H, Ho) = E cm,j(p - H)j/r forN > 1, 
j=o 

where um = entier(m/2)qN + r and cm, ,= Cm, 2 = = cmq_1 = 0. The reason for 
keeping q and r small is now apparent: the number of terms in (4.3) increases as q 
and r increase. If log terms would enter, one of the coefficients cm, j would be infinite 
and this form would fail. In this case we would choose the form 

N 

(4.4) [1] (H) = E aj(p - H)qj/T-2+, 
j=1 

where the choice of e is to be explained. Then [Sm] would be 

1'm iqN+r 

(4.5) [sm] (H, Ho) = 2 Cm,i,j(p H)-j/T+i 
i=0 j=0 
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where vm = entier(m/2) and cm, i = Cm, i,2 = * * = Cm,iq-1 = 0. The value of e 

is chosen so that log terms do not enter, i.e., so that 

_ 2n---1 qi + n+ e ? 
=ij~ -1 + r E5- 

(4.6) Xi jn + 1 5 0, 

for i-1, 2, *,entier (m/2) + 1, n =0, 1 , iqN + r, 

andj= 1,',N, 

for all m of interest, say m = 0, 1, *, m max. (An irrational value for e will satisfy 
(4.6) for all m, but of course only rational values can be used in current digital com- 
puters.) Since terms of the form (p - H)x i, in/x j n and (p - H)xiin+l/(xi jXn+1) 

will enter, e must be chosen large enough so that x jn and xi,j,n+l are not too 
small. On the other hand, large values of e will destroy the similarity between (4.4) 
and (4.2), so e must not be chosen too large. 

EXAMPLE 

(r 1.5) 

\/ 
\/ 

SON IC L iNE 

STREAMLINE 

HODOGRAPH PLANE 
(v,8) 

5. Example. In this section, the approximate solution to an initial value problem 
is presented in the form of graphs in the hodograph and physical planes. Three 
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similar examples can be found in [B-H-R, pp. 19-40]. The graphs were formed in the 
following way: 

(1) the line H = Ho was specified (Ho =-.2 was used in all four examples), and 
an Algol procedure was supplied for evaluating [f](G), [g(l)](0) and their derivatives 
(these two functions are the initial values for the differential equation); 

(2) the coefficients for [Sm], for m = 0, 1, ***, 41 were computed, using the re- 
currence relations in Theorem 3.1; 

(3) the coefficients for d[sm]/dH were computed from those of [si]; 
(4) three streamlines were traced in the hodograph plane: 

I(H, 0) ['](0, 1.5), '(H, 0) = ['](.05, 1.5) 

and 

*!(H; 0) = [*](.11 1.5); 

(5) these streamlines were numerically transformed into the physical plane, 
using the relations 

fcos {M 1'- dv + d} 
(5*1) - ~ ~~~~~~P v 

[sinoJ M2 - 1 
= * '{odv + *,d@} . 

4(0, 1.5) 2.20548 

+ .05,1.5) =2.0504\ 

7.500 - ., 1.5) = 887 

5.000 - 

2.500 t 

-2.500 -\\ 

-5.000 \\\ SONIC LINE 

STREAMLINE 

7.500 - \\ 

-10.000 \\ 

-12.500 \ , _, 
-4.500 -2.000 0.500 3.000 5.500 8.000 10.500 13.000 

X 

PHYSICAL PLANE 
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(See [B-H-R, p. 21] and [S, pp. 28-33] for further details and references concerning 
this transformation.) 

The values of H and 0 making up a streamline, 1(H, 0) = constant, were chosen 
so that 1[I](H, 0)-constantl < 10-5. During each calculation of [I](H, 0), terms in 
(2.8) were added in until the last term added was ? 106 X I (the current value of 
the sum) 1. An average of six terms (involving [so], [si], - * *, [sil]) of (2.8) was used in 
computing [I](H, 0). This example took about 13 minutes on the B550O, and in- 
volved about 1300 evaluations of [I](H, 0). The following initial values were used in 
this example: 

(5.2) f(0) = 2.538 sin r0/v(Ho), g(1) () -2.538sinrO/(v(Ho) (1 - .2v2(Ho))2^5) 

with r = 1.5. The examples in [B-H-R] include r = .8, 1, 1.2. For r = 1, (5.2) gives 
the initial values for the well-known Ringleb solution [R], 2.538 sin O/v(H) (any 
nonzero constant other than 2.538 is allowable). The example given here resembles 
flow around a corner; flows of this type are discussed further in [vM, p. 341]. 

In preparing these examples, v(H) was evaluated by using Newton-Raphson 
iteration to invert 

(5.3) H(v) = TV I- dt whereT = 1 -(k -1) 
2 (k+l) I - t 2ao 

(5.4) = Vr&(2/5 + r/3 + 1) -looQ + <A) + .251251 

Eq. (5.4) being valid only for k = 1.4. A more efficient method for calculating v(H) 
is possible if the (approximate) values of sm(H, Ho) and of v(Ho) are available. And 
each time ['14n](H, 0) is evaluated, the values of [sm](H, 0), for m = 0, 1, * *, 2n + 1, 
are available. This method is based on 

THEOREM 5.1. Let us define vo = v(Ho) and 

(5.5) V 1 - - ) 2).2./- 

Then v, vo, H, and Ho are related by 

(5.6) v\H) =. 

E {IS2(HI Ho)- VS2j+1 (HI Ho)} 

This result is surprising in that the right side of (5.6) is seen to be independent of 
Ho. The relation is most easily derived by equating the Ringleb solution, sin 0/v(H), 
to the solution, as given by (2.7), of the initial value problem, f(0) = sin 0/vo and 
g(1) ()= -V sin 0/vo. 

Suppose we wish to use (5.6) to calculate v(H) for H in some interval, I. We can 
use the bounds on Jsjf and Isj - [sjil to be given in Section 6, along with the fact 
that the denominator in (5.6) has values ranging between 

min v(Ho) and max v(Ho) 

X Ho~r v(H) HHOCI V(H) 

to decide how many terms are needed for the denominator sum in order to make the 
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truncation error less than or equal the approximation error caused by using 
[sm](H, Ho). 

6. Error Analysis. Before proceeding with a formal analysis, we present some 
empirical results. This will allow a more realistic evaluation of the error bounds 
to be proved. To do this we have used the Ringleb solution, 

(6.1) T R(HO 0) =2538 sin (H 

of Eq. (2.5) to set up initial value problems for Ho, H ? [-1, .22]. We have then 
used the program given in [B-H-R] to compute [\7R](H, Ho, 0) for H, Ho = -1, 
- .95, .2, .22. Figure 6.1 is a graph of the average error, E, versus Ho, where 

26 

(6.2) e(Ho) E ZTR(Hj 1) - [,k (HH 1)! 

and 

H1 = -1, H2 = -.95, * *,H25 = .20 and H26 = .22. 

Figure 6.2 is a graph of ITR - [T7y]I versus H, for Ho = -0.2. The maximum ab- 
solute error tabulated over all these examples was 3.91 X 10-5, occurring at H = .2, 
Ho = -.95. The error bound on ITR - [T7 RI, given by the sum of formulae (6.23) 
and (6.29), was tabulated for Ho = -1, -.95, - -, .05 and H = -1, -.95, * *.2, 
.22 (the omission of Ho = .1, .15, .2, .22 will be explained shortly). The upper curves 
in Figs. 6.1 and 6.2 are the corresponding graphs for this error bound. The maximum 
value tabulated for this bound was 1.2 X 10-3, occurring at H = .22, Ho = -1.0. It 
is difficult to maximize this bound, as a function of H and Ho. However, a somewhat 
weaker bound, given by (6.37) + (6.38), can be maximized easily, yielding an upper 
bound (for all Ho E [-1, .06593 ... ] and H E [-1, .22]) on the error in our ap- 
proximate Ringleb solution of 3.3 X 10-g. 

20 

\ . -~~~~~~~~~~~~~~~16 
AVG. 12 

BOUND x1 

8 

4 

-i -.9 -.8 -.7 -.6 -.5 -.4 -.3 -2 -.1 0 .1 .2 

Ho0 

Fig. 6.1 

It should be pointed out that the bounds of this section depend on 

maxH G [a .1 1(H) - [1](H)I. 

To get the values of the bounds discussed above, it was necessary to use (3.6) to 
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get a value for &. As mentioned earlier, (3.6) is not a mathematically established 
relation, so when we set 6 = 4.1 X 10-, we do not get mathematically established 
bounds. But we do get quite believable bounds (because (3.6) is quite believable). 

7 

6 

x'0-5 

Fig. 6.2 

4 

\ OUND3 

X ~~~~~~~~~~2 l 

-I -9 -. -.7 -.'6 -.5 -.4 -.3 -.2 I. 0 .1 .2 

H 

Fig. 6.2 

These calculations were done only for 0 = 1 radian since the simple form of 
jR and the fact that the error in [f(2i)] and [g (2i+1)] is very small in this case, make 

the relative error given by the formulae of this section essentially independent of 0. 
Let us proceed with a formal error analysis. The error involved in our computa- 

tion draws from three sources: 
(1) truncation-we have truncated the infinite series (2.7) for ' to yield 'iz; 
(2) function approximation-we have permitted the use of [1], [f(2i)] and [q(2i+1)I 

for j = 0, 1, * *, n, to yield [In]; and 
(3) roundoff-computations are done in fixed, finite precision arithmetic. 
Errors of types (2) and (3) can be confused easily: type (2) errors are due to the 

fact that the formulae used to calculate certain functions would not give exact 
values, even if exact arithmetic were used; type (3) errors are due to the inexactness 
of computer arithmetic. Confusion may arise when the inexact formulae are correct 
to within the roundoff error of the inexact arithmetic. 

Roundoff error has been no problem in our work, partly because we are using 10 
digits for our essentially 5-digit calculations. We shall not consider roundoff error 
here. The following analysis provides absolute bounds, as functions of H, Ho and 0, 
for the truncation and function approximation errors. A series of five lemmas is re- 
quired. The first three lemmas present rough bounds based on (2.9), itself a rather 
rough bound on I. The derivation of these rough bounds utilizes only one prop- 
erty of 1, namely that for H C [a, j3], 1 (H) I < c2. In this paper, we deal with [a, f3 
C [-1, .22], for which c2 < 62.47. When evaluating our bounds for particular H and 
Ho, we of course choose [a, fi] = [Ho, H], and use a corresponding c. 

Let a be defined by 

(6.3) I(a) = -1 . 

(For k = 1.4, we have a = .0659262218 .) When Ho < < a < < H or H < < 
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a < < Ho, the first bounds are poor. Lemmas 6.4 and 6.5 give considerably improved 
bounds, valid for Ho ? a < H. In the Ringleb computation considered, these new 
bounds were as much as 1010 better than the old bounds. The case H < a _ Ho 
probably can be treated similarly, but this will not be done here. (This is why the 
cases Ho = .1, .15, .2, .22 were omitted from the bound calculations summarized 
in Figs. 6.1 and 6.2.) The improved bounds depend on one further property of 1, 
namely that It(H)I < 1 for H E [a, a] with a ? a (and for any k > 1). 

In order to present simple a priori bounds, we assume that, for fixed 0, f(2j) (0) 

and g(2i+1) (0) grow (with j) no faster than geometrically. However, the derivatives of 
analytic functions can grow much faster than this. (If h(0) is analytic, then by 
Cauchy's formula, Ih i)(0) I < max Ih(0) j!r-i'1, where r is the minimum distance of 
0 from the boundary of some domain within which h is analytic; the maximum of 
jh(0) I is to be taken over the same domain from which r is computed.) The bound on 
the approximation error also involves terms which must bound the error caused by 
[f(21)] and [g(2i+1)] for j < n. If these errors can be assumed negligible (or if a bound 
can be found), then an a posteriori bound on the error due to function approximation 
can be computed, while the approximate stream function, [[], is being computed, 
without any assumptions about the growth of f(2i) and q(2j+1); the actual values of 
[(2i)]() and [g(2i+1)](0) could be used in the bounds. This is not possible for the 
truncation error; we must have definite knowledge of the growth of f(2i) and g (2 j+1) 

as j -+ oo, in order to bound this error. And a bound on the function approximation 
error is of no value without a bound on the truncation error. The usual heuristic 
solution to this problem consists of letting the program determine when to truncate 
the series for [ dynamically, on the basis of the size of the last term computed; when 
the last term is small relative to the current value of the series, the truncation error 
would be assumed negligible. (The program given in [B-H-R] allows the user to de- 
cide whether a fixed number of terms or the heuristic stopping criterion is to be used.) 

In the following, we assume that c > 0, and we let Tn and An denote the trunca- 
tion and function approximation errors involved in (2.8), respectively, so that 

(6.4) T, (H, Ho, 0) -(H d0) - ' (H. Ho, 0), 

(6.5) A, (H) Ho, 0) An (HI Ho, 0) - [n1] (H. Ho, 0). 

The proofs of the following lemmas may be found in [B-H-R]. 
LEMMA 6.1. Let 0 be fixed. Suppose there exist constants rf, rg , Bf and Be for which 

(6.6) If (2j (0)l < rf2jBf 
I 
fg(2j+l) (o) I? rg2 j+'B for j > n + 1 

Let an upper bound function, Un, be defined by 

(6.7) Un(h, x) Bh (rh cosh (rhx), 

where h can be f or 9. Then we have 

(6.8) ITn(HHo, 0)f < U2n+2(f, cjH - Hol) + - U2n+3(q, cJH - Hol) 

for all H, Ho E [a, ,I. 
Let us define 
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6 -1 
(6.9) Sm(HHo) - Cj- (c HOTI 

(6.10) Em(Hy Ho) sm(Hy Ho) - [Sm](H Ho), 

(6.11) 6 max I1(H) - [l](H)j 
H(=[aRf] 

where 6a = 1 if m is even and 6m = c if m is odd. 
LEMMA6.2. We have 

6 )/ (6.12) IEm(HyHo) I < - entier S&(HyHo) (1 + 6c2)m/2 form > 0. 
C22 

LEMMA 6.3. Let 0 be fixed, and let constants Cf., Df, Cgy Da, cf. cg, df and dg satisfy 

(6.13) Cfcf I >' If 21 2 C9C92+>19(j 

(6.14) Dfdf2j > If (2' - [f (2'I D]d 2j+1 > jg(2j+l) _ [g(2j+l)j 

forj = O, 1, * , n. Let us define bounding functions, F and G, by 

(6.15) F(K, x, y) (Cfx sinh x + Dfy sinh y) + Df cosh y, 

(6.16) G(K, x, y) (Cgx(cosh x - 1) + Dey(cosh y - 1)) + De sinh y . 

Then we have, with z = (1 + 6c-2)l/2 IH - Holc, 

(6.17) jAn(H, Ho, 0)1 < F(c2, cfz, dfz) +- G(c2, cez, dz) 
C 

independent of n. 
The above bounds on Tn and An are reasonable as long as [a, (3] is such that c 

remains small. But as ,3 -+ p we have c -+ oo. Our bounds can be weak because the 
constant c multiplies the whole of IH - Hol in our bound of (2.9): 

(6.18) Ism(H, Ho) I < (cjH - HoI)m6m-l/m!. 

If Ho < < a < < H, then c and IH - Hol are large. It does not seem fair that, in 
this case, c should multiply all of IH - Hol since c is only needed to bound 1 in 
[a, H]; a bound of unity suffices in [Ho, a]. Thus we may expect to be able to replace 
cjH - Hol by c(H - a) + a - Ho in this case. Indeed, this can be done if the factor 
of 36-m is removed, as can be proved from the following stronger result. With h = 
H - a and ho = Ho - a, let us define 

Sm* (Hy Ho) .5(1 + +) (ch Mh?Y + .5(1 - (-ch- h0) 

for m > 0. 
LEMMA 6.4. We have 

(6.20) Im (HI Ho)I | Sm* (Hy Ho) for Ho < a < H 
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with equality holding for m = 0, 1. Further, this bound holds if a is replaced by any 
number between Ho and a. If a is replaced by Ho or c = 1, then (6.20) reduces to (6.18). 
Also, we have 

(6.21) Sm(H, Ho) > Sm*(H, Ho) forHo < a < H and m ? 2, 

(6.22) Sm(H, Ho) = Sm* (H, Ho) for Ho = a < H or Ho ? a = H or m = 0, 1 . 

The case H < a ? Ho probably can be dealt with in a similar manner, but this 
will not be pursued here. The bound on Tn corresponding to this new bound is 

Tn (HI Ho, 0)1 < .5(1 + ){U2n+2(f, ch - ho) + U2n+3(g, ch -ho) 

(6.23) + .5(1 - c){U2n+2(f -ch - ho) + U2n+3(g, -ch - ho)} 

for Ho - a = ho <0 < h = H - a. 

To get a new bound on Em and An we present the following generalization of (6.12). 
LEMMA 6.5. If Em(H, Ho) and Sm*(H, Ho) are defined as in (6.10) and (6.19) then 

'Fgm(fHOH) 
< 6 (I + 6)m/42entier (2 )Sm* (HI Ho)- I(C2 - 1) I~mk,0l ~ C2 \2 /'2a(m) 

(6.24) X (cHh) o)a1 m (6.24) In~~~~s~(H H0Y (m- ) fk)j 

for m ? O and H0 ? a < H. 

where S*1 0, and a(m) = 0 if m is even and a(m) = 1 if m is odd. Further, this holds 
if a is replaced by any number in [Ho, a]; if a is replaced by Ho and (1 + 6)m/2 by 
(1 + 6C-2)m12, or if c = 1 then this reduces to (6.12). 

Various weaker, but simpler, bounds can be proved, two of the simplest (and 
weakest) being 6(1 + 3)m12 entier (m/2) Sm*(H, Ho) and 

6 entier (m/2) ((ch - ho) (1 + 6)l12)m/m! . 

The new bound (6.24) on Em provides the following bound on An: let bounding 
functions Fi and Gi be defined by 

F, (K, x, y) (1 +c (x + b(x + y),K sinh (Kx, 
k6.25) 

+ (1-?)(y + b(x + y))K sinh (Ky), 
6 

F2 (x, Y 2 {CfFl (cf x, y) + DFl (df, x, y)} 

(6.26) 4c 

+ 2 {(1 + ) cosh (dfx) + (1 )cosh (dfy)}, 
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Gi(K, x, y) (1 +- )(x+ (x + y))K (cosh (Kx) -1) 

(6.27) ( c- (Y + 2 (x + y))K (cosh (Ky) - 1) 

-b(x + y)(cosh (K(x - y)/2) - 1), 

G2(x, y) -2 {CgG1(cg, x, y) + DgG1(dg, x, y) 
(6.28) 4c 

+ g 
{1 + ) sinh (dgx) + 1- sinh (doy)}, 

where b C2 -1. Then it follows that 

(6.29) lAn(H, Ho, 0) 1 _ F2 (x, Y) + G2 (x, Y), 

where 

(6.30) x = (ch -h)(1 + 6)1/2 and y = (-ch - ho)(1 + 6)1/2. 

Our new bounds, (6.23) and (6.29), reduce to the old bounds when either c = 1 or a is 
replaced by Ho, (1 + 6) m/2 by (1 + 6c-2)m/2 and, if Ho > H, then H and Ho are inter- 
changed. For this reason, a program for calculating these bounds need be written 
only for (6.23) and (6.29); for the cases H < a or Ho > a, the old bounds can be 
derived by the replacement just described. For the Ringleb computation, all growth 
constants are 1, and 

(6.31) Cf = Bf = 12.538 sin (1)/vol 

(6.32) Cg = Bg = -2.538sin (1) 

(6.32) C~~~~ = B0 -~V v(1 - .v0). 

(6.33) Dh = 10-9Bh forh = fq, 

(6.34) 6 = 4.10533 X 10-. 

The bounds 

(6.35) sm (HyH0)l < (ch-h)) forHo < a < H 

(6.36) lEm(HyHo)l < 6 entier (ji) ((ch - ho) (, + 6)L for)H < a <H 

can be used to derive simpler bounds on An and T: 

(6.37) JAn(H, Ho)l < F(1, CfZ, dfz) + G(1, cgz, dgz), 

(6.38) 1Tn(H, Ho 0) I < U2n+2(f, ch - ho) + U2n+3(g, ch - ho) 

where z = (ch - ho) (1 + 6)1/2 and F and G are given by (6.15) and (6.16). As 
ch - ho increases and Ho decreases, these bounds increase. Thus they attain their 
maxima when H = d and Ho = a. For the Ringleb computation described above, 
this implies 
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(6.39) 1T71 + IA71 _ 3.3 X i0- forH E [-1, .22] anu Ho E [-1, a], 

the bound being calculated at H = .22 and Ho = - 1. The disadvantage of these 
simpler bounds is that, when a is replaced by Ho, they do not reduce to our old 
bounds; a factor of C2 is lost. Thus, as Ho -?) a from below, while H > a, these bounds 
will become several orders of magnitude worse than our more complex bounds. (If 
d were closer to p, then c2 would be even larger and this loss would be more drastic.) 
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